
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41134 146

Malware Catcher using Crypto Identifier

Thomsy William

Department of Computer Science and Engineering, Viswajyothi College of Engineering and Technology,

Vazhakulam, Kerala, India

Abstract: Today the world is heading towards internet related activities at every zone of life. With the same pace the

threat of malwares are also proportionally increasing with the usage. Although most of the threats detecting strategies

are highly active, malware builders are also trying to strengthen their shield to overcome malware detection.

Cryptography’s dark side is being utilized for this purpose. Using cryptography the appearance of the malicious code is

scrambled, thereby helping to bypass the anti-virus employed for detection purpose. Hence to identify the underlying

cryptography is the main goal to be achieved to stop such malicious activities. To identify the presence of cryptography

the execution of such programs were monitored using a DBA tool named Valgrind. The results shows the memory

locations of famous cryptographic routines. Further with the help of signature based matching, the malicious presence

was confirmed.

Index Terms: AES; Cryptography; Malware; Malware Signature; RSA; SHA-1; Valgrind.

I. INTRODUCTION

Cryptography is a way in which one scramble the data so

that no one understands its actual meaning. Hackers have

utilized the dark side of cryptography. Traditionally

cryptography was used for defending malicious activities.

But now, cryptography is also used as a means of hiding

the attacker’s content from recognition. Using

cryptography attackers try to break the similarity between

what an antivirus analyst views about a virus and what the

virus writer views. The major problem solved by this

thesis work is to overthrow the cryptography employed by

malwares. Most of the malwares employ many of the

software which could simply encrypt the given data as per

the requirement. The encrypted data is then send to the

destination wherein the malicious activities are performed.

Still manual analysis is being carried out by researchers on

malware binaries to reverse engineer the decryption

algorithms. Manual malware analysis, however, is highly

labor intensive and cannot cope up with the increase in

number of encrypted malware binaries. The Storm and

Kraken bots are the most recent and widely publicized

examples of malware that encrypt their communication.

Today a large number of malware analysis platforms

exists which successfully hides the cryptographic present

in it. Now before analyzing deep into various malwares,

one need to initially over throw the shield created by the

cryptographic functions. Through cryptographic identifier,

this system tries to reach out to the infected code. So here

the first phase is to develop a crypto identifier referring to

various existing techniques and then based on pattern

matching, the signatures of malwares have to be analyzed.

Mostly two types of encryptions are incorporated, they

include the one using keys and the one without keys. Most

of the malware writers transmit the key for encryption,

along with the encrypted code [by storing it to the very

end of the file, with less recognition probability]. Hence

once the code is delivered to the destination, it could use

this hidden key to uncover the scrambled malicious code

and carryout the respective malicious actions. So normally

to hide the key most of the hackers prefer the footer end

location of the file. This is normal scenario undertaken by

the hackers of this era.

In the past the recovery of crypto routines a lot of manual

effort was required for this reverse engineering and

analysis. But here the approach is to automate this process

of finding encrypted malware portions that contains crypto

functions as well. The knowledge about these parts helps

analysts to extract the detail functionality of tools and

create decryption add-ons for monitoring tools. These add-

ons include signature based malware checker which could

possibly confirm the presence of malwares. Most of the

anti-malwares identifies malwares by checking for the

presence of signatures of the malwares. But they fail if

such signatures are scrambled and made into unreadable

form or meaningless form.

Most of the existing systems recognizes cryptographic

presence by analyzing the execution of the encrypted

software. Normally dynamic binary analysis tools are used

to analyze the execution traces of the program under

execution. One such tool called Valgrind is used to

monitor the execution. The online analysis result of

valgrind is taken as the analysis log. Once the

cryptographic presence is confirmed then comes the

malware checker based on signatures. Most of the

malwares poses a signature which refers to the identity of

the malware. The most important fact which was revealed

through this work is that none of the current software

implementation of already existing cryptographic

algorithms achieves perfect secrecy if their execution is

viewed.

II. MALWARE ANALYSIS

In the world of malware detection analysis of the existing

malwares holds a major prerequisite for any anti malware.

To analyze malwares many techniques exist. Among them

the most successful one is the binary analysis. As this

paper tries to introduce an encrypted malware identifier,

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41134 147

the cryptography has to be identified first. There exist

many tools which performs the analysis based on

monitoring of binary analysis and various other heuristics.

Let us ponder through some of the mostly accepted and

widely used cryptography analysis techniques and

cryptographic identifiers.

A focus on cryptography alone exists only in few

approaches. Finding of cryptography can be categorized

into static and dynamic analysis techniques. Many works

[2]-[8] addresses the task of binary analysis. One such

paper was Inspector Gadget [6] which presented an

algorithm to automatically extract details from a given

binary executable. Thus from the details collected one has

to come to a conclusion of cryptographic presence. So

next target to be achieved was to identify the

cryptographic primitives from the so called details

collected. Paper which tried to accomplish such a strategy

is discussed in [7]. Next came a publicly available

infrastructure for performing program verification and

analysis tasks on binary code, explained as BAP [8].

Likewise among the few systems introduced the most

successful one was CIS [10], which proposed a system to

identify and extract crypto algorithms in binary code.

Most of the existing systems tried to identify the presence

through monitoring of the execution traces. But none of

them could actually reveal the presence of malicious code.

And only the existence of the encryption was identified

and confirmation of malicious presence was left unclear.

III. SYSTEM STUCTURE AND DESIGN
.

Figure 1 shows the structure of the entire system in a

capsule format. This structure shows a proof of concept

model.

Figure 1: Overview of the entire system

The system contains a pre-requisite section or the first

stage. This section is viewed from a black hat hacker’s

view. The system performs encryption on the signature

[eg. bc356bae4c42f19a3de16e333ba3569c] of malware

using in build java class. It then stores the key within the

file with malicious code in a location which is noticed

very rarely. Instead of signature one could also encrypt

any program code which is containing the malicious

related activity. Signature is being taken here because

almost all anti-malwares are compromising most of the

malwares by identifying their respective signatures. So the

malicious code writer will surely do his maximum to avoid

the recognition of signature. Once the required data is

ready [i.e., the encrypted malicious code], it is then

forwarded to the proposed crypto identifier. Wherein the

data is scrutinized under regular scan at the OS level. On

a practical view every program snippets undergo this

check irrespective of any of the visible malicious nature

[like file extensions]. Once the presence of cryptography is

confirmed, it is then forwarded to second stage of analysis.

In this stage only the malware presence is fully confirmed.

A database containing signatures is being used to cross

check with the output of the previous stage.

A. Encrypting stage

 Encryption stage is the pre-requisite for further

analysis. A model of the encrypted malicious content is

made explicitly. Here the signature is taken for encryption.

Many numbers of encryptions can be embedded into the

signature. In the initial stages the malicious code writers

simply tried to scramble the sensitive data i.e., the

signature using any one encryption. But nowadays most of

them employ more than one encryption methods over to

the signature one after the other. Here also 3 encryptions

are basically incorporated. They include RSA, AES and

SHA-1. RSA and AES are used back to back in a single

stretch in any order. Either AES first followed by RSA or

vice versa. That is if AES is used initially for encryption

then the result obtained after encryption is used as the

input for the second encryption RSA. Whereas SHA-1 is

used completely isolated. No other encryption is mixed

with it. This encryption strategy can be varied based on

one’s taste for encryption. This thesis work follows this

strategy of encryption. Encrypting the malware signature

with three main crypto algorithms with a hacker's mind set

is the main preprocessing task. Then this particular section

as a whole undergoes the monitoring process.

B. Analysis of Cryptography: Valgrind

There exists much system which recognizes cryptographic

presence by analyzing the execution of the encrypted

software. A dynamic binary analysis tool is used to

analyze the execution traces of the malicious encrypted

code. Dynamic binary analysis (DBA) tools are tools that

analyze programs at run-time at the level of machine code.

Such a tool called valgrind is used to collect the log

regarding the execution traces of this module [11]. Based

on the log details obtained the following objectives were

accomplished.

1. Determining the presence of any cryptographic

functions.

2. Analysis of Cryptography functions.

3. Finding the hidden encryption keys.

4. Confirming malware signature match.

Figure 2: Overview of Encryption analysis section

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41134 148

After completing the phase of preprocessing the model is

ready to look forward for the encryption analysis phase.

As explained earlier, this phase is accomplished with the

help of valgrind. Here the valgrind acts as an intermediate

who provides the malware catcher with the details of the

currently running program at the memory level in a detail

form. Here every code under execution is under

monitoring of the valgrind tool. As an initial step to the

model, many samples were verified using valgrind tool.

Both infected and good program code were verified using

this famous DBI tool. The output generated from this tool

is shown in figure 3.

Figure 3: Valgrind Output

The output thus generated is manually verified for the

presence of certain code word which represents the crypto

routines used in a Linux executable. Names of the main

crypto routines identified are shown following table I.

Table I: Crypto Routines

This crypto routines table is referred from the base paper

[1].

Once the presence of these routines are identified it could

come to the conclusion of presence of encryption. With

this new step one thing is very much clear that to date no

proper mechanism is discovered to keep the encrypted

materials hidden, when its execution is being monitored.

C. Decryption and Signature Identification

Once the encryption presence is confirmed, the next step

for further confirmation of malwares has to be performed.

According to this proof of concept model three main

encryptions are being tested. Among them two of them are

based on encryption keys [AES and RSA] and one is a

hashing function.

Most of the virus writers tries to hide their code using

encryption which is very complicated and on a series

fashion. That is the actual virus content will be hidden first

and will be followed by next set of encryption methods. So

with this thesis work the focus is to exploit this nature of

malware creators. This model’s preprocessing stage have

tried to perform such a similar approach of encryption.

Now for decryption of symmetric encryption the initial

process is to identify the hidden key for decryption. Here

again the common trend shown among the black hat

hackers for hiding the keys are exploited. Most of the

hackers of this era tries to generate an encrypted

unreadable version of the code with a large content. And

they try to make it even larger which makes the security

checker less interested to go further through the

unreadable data content. But here comes the actual brain

work of the attacker, that, he/ she saves the key ,required

for the encryption ,to the footer location of this particular

file, which will be very deep end of the file.

Once the keys are identified the decryption process is

carried out in a series fashion. Since the hashing function

does not possess a reversal of encrypted code, the only

option is to perform hashing once more on the final output

of the second decryption step and compare it with the

actual encrypted data. The decrypted content is then

verified with a set of malware signatures. If matching is

found in the comparison then the malware presence is

confirmed. Malware signature is like a fingerprint that can

be used to detect and identify specific viruses. Normally

anti-virus software uses the database of virus signature to

identify malicious code. E.g. Signatures -

bc356bae4c42f19a3de16e333ba3569c. Such a collection

of signatures is made in order to compare the results.

IV. PERFORMANCE EVALUATION

The major goal of this work is to identify encrypted

malwares from the given code. For the performance

evaluation process false positive and negative rates are

taken. The goal of testing was to find out false positive

and false negative. Based on signatures, malware detector

detects the malware presence.

Figure 4: ROC Curve of malware detection

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41134 149

Normally antivirus programs compare their database of

virus signatures with the files. The antivirus vendor

updates the signatures frequently and makes them

available to customers via Web. Nowadays, malware

detection system requires high detection rate and low false

alarm rate.

For this proof of concept model many signatures were

collected. The major source for this collection process was

from web.

V. CONCLUSION AND FUTURE WORK

Finding and extracting cryptographic functions from

binary executable is often a hard reverse engineering task

that requires a lot of manual effort. Still, it is an essentially

important analysis step in the fight against malware. This

work tries to make a first step into this direction by

deriving important requirements any crypto detection

framework should fulfil. The proposed prototype have

successfully shown that it is capable to detect public key

cryptography, block cipher and hash operations. Initially

the prerequisite of the prototype was accomplished by

providing three encryptions. Then with the help of crypto

identifier the system tried to identify the encryptions

incorporated. It is then followed by decryption and finally

ensuring the malicious presence using signature based

malware identification. One proposed extension of this

work could be to build a dynamic binary analysis tool

without depending on Valgrind.

REFERENCES

[1] Xin Li,Xinyuan Wang and Wentao Chang, \CipherXRay: Exposing
Cryptographic Operations and Transient Secrets from Monitored

Binary Execution",IEEE Transactions on dependable and secure

computing, VOL. 11, NO.2, MARCH/APRIL 2014.
[2] Chi-Keung Luk , Robert Cohn , Robert Muth , Harish Patil Artur

Klauser ,Geo_ Lowney , StevenWallace , Vijay Janapa Reddi and

Kim Hazelwood , \Pin - Building Customized Program Analysis
Tools with Dynamic Instrumentation,"Proc. Intl Conf. World Wide

Web (WWW), ACM 2005.

[3] Nicholas Nethercote and Julian Seward, \Valgrind - A Framework for
Heavy-weight Dynamic Binary Instrumentation ,"Proc. 16th Intl

Conf. World Wide Web(WWW),ACM,2007.

[4] Johannes Kinder and Helmut Veith, \Jakstab - A Static Analysis
Platform for Binaries ,"SIGIR ACM,2008.

[5] Juan Caballero, Noah M. Johnson, Stephen McCamant and Dawn

Song,\Binary Code Extraction and Interface Identification for
Security Applications,"IEEE , 2009.

[6] Clemens Kolbitsch , Thorsten Holz , Christopher Kruegel and Engin

Kirda, \Inspector Gadget-Automated Extraction of Proprietary
Gadgets from Malware Binaries,"IEEE Symposium on Security and

Privacy,2010.

[7] Grobert F , Willems C and Holz T, \Automated Identification of
Cryptographic Primitives in Binary Programs,"Transactions on

Secure Computing,2010.

[8] David Brumley, Ivan Jager, Thanassis Avgerinos and Edward
J.Schwartz, \BAP - A Binary Analysis Platform ,"ACM, 2012.

[9] Joan Calvet , Jos M. Fernandez and Jean-Yves Marion,

\Cryptographic Function Identification in Obfuscated Binary
Programs,"ACM, 2012

[10] Felix Matenaar, Andre Wichmann, Felix Leder and Elmar Gerhards-

Padilla ,\CIS The Crpto Intelligence System for Automatic
Detection and Localization of Cryptographic Functions in Current

Malware," IEEE, 2012.
[11] [ONLINE] http://valgrind.org/docs/manual/QuickStart.html

[12] [ONLINE] http://www.findjar.com/jar/bouncycastle/bouncycastle-

jce-jdk13/112/bouncycastle-jce-jdk13-112.jar.html

[13] [ONLINE] https://blog.malwarebytes.org/intelligence/2013/04/

malware-in-a- jar/
[14] [ONLINE] https://www3.ntu.edu.sg/home/ehchua/programming

/java/JavaNativeInterface.html

	INTRODUCTION
	MALWARE ANALYSIS
	SYSTEM STUCTURE AND DESIGN
	Encrypting stage
	Analysis of Cryptography: Valgrind
	Decryption and Signature Identification

	PERFORMANCE EVALUATION
	CONCLUSION AND FUTURE WORK
	REFERENCES

